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The problem of long-range bond percolation (LRBP) is studied both with 
scaling arguments and simulation methods. New scaling relations are proposed 
for the mean-field region and the fractal properties of the LRBP clusters are also 
investigated. 
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1. I N T R O D U C T I O N  

Mean-field percolation has proven to be somewhat more subtle than 
originally expected. The introduction by Newman and Schulman (1'2~ of the 
possibility of an infinite number of spanning clusters at or above the 
percolation threshold and the subsequent development of this idea by 
Coniglio, (3) Aharonyetal. ,  ~4) and de Arcangelis (5) for nearest-neighbor 
bond percolation above six dimensions demonstrates the subtlety of this 
problem. In addition, the presence of a mean-field scaling regime in 
long-range bond percolation (LRBP) is generally accepted, whereas the 
situation in the long-range site problem remains unresolved in the 
literature. (6 11) 

Recently it has become clear that critical droplets in nucleation near 
the mean-field spinodal can be described as LRBP clusters/12 15) Monte 
Carlo studies of Ising models in two dimensions ~6'~7) have obtained a 
Hausdorff dimension ~ls/ of d (the Euclidean dimension) for these droplets 
(or clusters) rather than the value of 4 one would have expected from a 
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naive extension of the results obtained for models with short-range bonds 
in dimensions greater t han  six. This has motivated the present study of 
LRBP. 

In this work we have employed both simulations and scaling 
arguments to investigate the mean-field regime of LRBP when p < Pc, as 
well as some aspects of the crossover to nearest-neighbor bond percolation. 
Our main results are that certain scaling relations must be modified in the 
LRBP limit and that the fractal (tg) dimension dj-, which we distinguish 
from the Hausdorff dimension, depends on the way it is measured. In this 
work we will always refer to the fractal dimension as the power associated 
with the way the mass of clusters M whose radius of gyration is of the 
order of the connectedness length ~ scales with ~; i.e., M ~  ~dj? The 
Hausdorff dimension dH will be used to refer to the way the mass scales 
with a running length. That is, if the density of the cluster p~ is plotted as a 
function of the radial coordinate l and p ~ ~ l d"- a, then dH is the Hausdorff 
dimension. 

The remainder of this paper is divided into five sections. In Section 2 
we establish the fact that our simulations are well within the mean-field 
regime. We show that all critical exponents are classical and argue that the 
LRBP clusters are isomorphic to those in bond percolation on a Bethe 
lattice. In Section 3 we describe the geometrical mechanism which enables 
LRBP to cross over to the asymptotic regime and show how it is related to 
the breakdown of hyperscaling. Section4 contains our analysis of the 
fractal properties of clusters. We summarize our results in Section 5 and 
briefly discuss the relation between our work and that of Coniglio, (3) 
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Fig. 1. Neighborhood of a site in two dimensions. Sites which can be directly connected by a 
bond to the central site are indicated by solid dots. In this example R = 3. 
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Aharonyetal., (4) and de Arcangelis (5) concerning the breakdown of 
hyperscaling for nearest-neighbor bond percolation above six dimensions. 
Finally, we include a description of our algorithm in the Appendix. 

Before proceeding, we define the LRBP problem we use in the 
simulations. We are dealing with a random bond percolation problem 
defined on a hypercubic lattice with dimension d < 6. A site can be directly 
connected by a bond to any site within a surrounding neighborhood. The 
boundary of this neighborhood is a box with sides parallel to the axes of 
the lattice. Figure 1 shows a neighborhood about an arbitrary site in two 
dimensions. The length of a side of the box is defined to be 2R + 1 lattice 
spacings. R is an integer called the "range of the bonds." The number of 
neighbors for a given value of R is (2R + 1 ) a -  1. All bonds are not the 
same size; their lengths vary from a minimum of one lattice spacing to a 
maximum of R ~ lattice spacings. In our simulations R ranges from 1000 
to 20,000 lattice spacings. 

2, T H E  M E A N - F I E L D  R E G I M E  IN LRBP 

In this section we present evidence that LRBP with a sufficiently large 
coordination number exhibits mean-field scaling over a certain range of 
bond probabilities below Pc. We discuss the similarities between the LRBP 
clusters in this regime and clusters in a different percolation problem: bond 
percolation on a Bethe lattice. It appears that the intrinsic structure of 
clusters in both problems is i~tentical, but the way in which clusters are 
"arranged" on their respective lattices is quite different. We have measured 
the three critical exponents 7, ~, and v (defined below). The numbers 
obtained are the classical values 1, 5/2, and 1/2, respectively. These results 
are independent of both the range of the bonds R and the dimension of 
space d as long as we remain in the mean-field regime. Finally, we 
demonstrate that the parameters we choose are always such that the 
well-known Ginzburg criterion for classical behavior is satisfied. 

In order to measure critical exponents, we must know the value of Pc 
to within a reasonable degree of accuracy. The approximate values of Ap = 
(Pc-  P)/Pc which are in the range of our measurements must not differ 
appreciably from the true ones. Empirically, we should be able to test the 
approximation simply by looking for deviation from power-law behavior as 
Ap decreases. We will adopt this view and choose 1~(z - l )  as an 
approximate value for p~. (here z is the coordination number). The 
motivation for this choice comes in part from the work of Erd6s and 
R6nyi, (2~ who studied a graph of N sites in which every pair of sites has a 
probability p of being directly connected by a single bond. When p > 1IN 
there is a nonzero fraction of sites which belong to a single cluster in the 
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limit N ~  ~ .  The large coordina t ion  numbers  in the L R B P  simulations 
lead us to expect a similar type of  behavior; namely, that  near p = 1/(z - 1) 
any given site should have a nonzero  probabil i ty of being connected to a 
non-zero fraction of its neighbors. 

Another  reason to take 1 / ( z -  1) to be the approximate  value of Pc is 
that  it is the true value of  Pc for bond  percolat ion on a Bethe lattice with 
coordina t ion  number  z. (21) We can present a simple intuitive a rgument  to 
show that  this percolat ion problem is nearly identical to L R B P  in the 
mean-field regime. Consider  the construct ion of a single cluster in LRBP.  
Figure 2 shows an example of  the first two steps of  this process on a two- 
dimensional  lattice (a l though we note that  this a rgument  holds for 
arbi t rary d). Initially, all bonds  are closed. First we open a bond  between 
two sites labeled A and B (Fig. 2a). We then open bonds  between A and its 
remaining z - 1 neighbors with probabil i ty p < 1/(z - 1). As a result, most  
bonds  will remain closed, since the probabil i ty of k open bonds  P ( k )  is 
given by P ( k )  = e i/k! (see Appendix).  Suppose we find that  the two bonds  
connecting A to sites C and D are open (Fig. 2b). Next  we proceed to open 
bonds between B and its z -  1 neighbors. Since in this example C happens 
to be a c o m m o n  neighbor  of both  A and B, there is a chance of  a three- 
bond  loop forming between the sites A, B, and C. However,  since P ( k )  is 
independent  of  z and p ~ 1/(z - 1), we can make the probabil i ty of an open 
bond  connecting B and C as small as we wish by increasing the value of  z. 
In this sense we can regard the neighbors of  A as being distinct f rom those 

A C B 

(a) (b) 
Fig. 2. (a) Construction of a cluster begins with tile opening of a bond between sites A and 
B. The boxes indicate the neighborhoods of these two sites. R is large, so that the lattice 
spacing is too fine to be resolved in the diagram. (b)Bonds are opened between A and its 
remaining z - 1 neighbors with probability p <~ 1/(z - 1). As a result, two other sites B and C 
are connected to A. 
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of B. We can continue to construct the cluster by repeating the "opening of 
bonds" process for every new site that we add. At some stage it is quite 
likely that there will be several sites lying within the neighborhood of the 
current growth site which already belong to the cluster. As long as their 
number is much smaller than z, our "distinct neighbors" approximation 
will still be valid. We could have duplicated this cluster construction 
method on a Bethe lattice without ever having to worry about all this; the 
z -  1 offspring of every site are always distinct from those of other sites. It 
appears then that as long as the "distinct neighbor" approximation in 
LRBP holds, the intrinsic structure of clusters in both percolation 
problems will be identical. 

It is important to note that the Bethe lattice we consider will have, in 
each generation, z - 1 possible bonds of different lengths out of each vertex. 
In Euclidean space these bonds can cross (i.e., pass through each other). 
Such crossings do not, of course, generate loops and clearly will have no 
effect on the critical exponents, including the fractal dimension. They will, 
however, have a profound effect on the Hausdorff dimension. 

The preceding arguments are substantiated by the simulation data in 
Figs. 3-5. We have grown large clusters in the LRBP regime using a 
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modified Leath algorithm (see Appendix). In Fig. 3 we show the mean 
cluster size versus Ap in a l o ~ l o g  plot for d =  2, 3, and 5. Figure 4 is the 
same plot for two values of  R. The plots are identical. This indicates that 
the mean cluster size is independent of R and d in both the amplitude and 
the scaling power as long as we remain in the mean-field regime. The 
amplitude appears to be unity, as does the value of 7. Denoting the mean 
cluster size as S(p), we have 

S ( p )  = (Ap)  1 ( 2 . 1 )  

This is exactly the same form as the mean cluster size for bond percolation 
on a Bethe lattice in the limit of  large coordination number. ~21) Figure 5 
shows the data which determine the cluster distribution exponent v. We 
have generated 10 6 clusters and then graphed the number composed of s 
sites versus s on a l o ~ l o g  plot. The ordinate values are proportional to the 
probability of  a site belonging to a cluster of size s. This means that in 
terms of the number of s-site clusters per site (n,), the number of clusters 
composed of s sites will scale as 

s n s  ~ s - ~  + t (2.2) 
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Fig. 5. Number of clusters versus size of clusters. Ap = 0.007, R = 1000, d =  5. A total of 106 
clusters were generated to obtain this plot. Error bar value: _+0.04. Slope of graph: 
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i.e., the slope of this plot should be 1 - ~. Quite accurately we find the value 
of the slope to be - 3 / 2 ,  indicating that r has the mean-field value of 5/2. 
Again the result is independent of both R and d as long as we remain in the 
mean-field regime. 

In other percolation problems, knowledge of 7 and ~ is enough infor- 
mation to determine the others by means of the scaling relations. However, 
since some of these involve d (i.e., the hyperscaling relations), this is not 
permitted in the mean-field regime of LRBP. Mean-field critical exponents 
only obey the hyperscaling relations when d = 6 .  Consequently, our 
measurements of 7 and r allow us to calculate ~,/3, and 5 but not v or t/. In 
order to determine the remaining exponents, we must measure one of these 
last two. Our choice is the connectedness length exponent v. We have taken 
the average value of the radius of gyration of several large clusters and 
graphed them as a function of Ap on a log-log plot. Figure 6 shows the 
data for the dimensions 2, 3, and 5. It is clear that v has the mean-field 
value 1/2 and is independent of d. 

We can also argue that v should equal 1/2 from purely geometrical 
considerations. Consider the problem of determining the scaling of the con- 
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nectedness length ~ on a Bethe lattice below Pc. It is well known that one 
must imbed the lattice in an infinite-dimensional space to find the correct 
value of v =  1/2. (21) If instead we define ~ in terms of the number of 
generations spanned by the cluster or the "chemical distance, ''(22) we find 
the exponent Vcd = 1. Now we also know that the number of generations in 
the backbone of a cluster the size of the connectedness length must also 
scale as ( 3 p ) - V ' L  But these clusters are identical to those in the mean-field 
regime of LRBP. Since the cluster has no loops and the large range R 
makes excluded-volume effects negligible, the backbone must describe a 
random walk. The modified Leath algorithm ensures that all backbone 
configurations are equally probable, which is the correct weighting for 
random walks (see Appendix). In any dimension the radius of gyration of a 
random walk scales as n 1/2, where n is the number of steps. (21~ Therefore 

~ n 1/2 ~ [-(3p) -~cq 1/2 = A p -  1/2 (2.3) 

so that v equals 1/2 in the classical regime of LRBP. 
The connectedness length must also scale with the range of the bonds, 

Since all of the quantities we have measured have been independent of R, 
we expect it to enter in only as a prefactor of ~. The role of R seems to be 
solely to provide enough neighboring sites in order for the probability of 
loops to be low enough so that the clusters can exist as branched objects in 
the mean-field regime. Figure 7 shows a graph of the average radius of 
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gyration of large clusters at a fixed value of Ap versus the range of the 
bonds. As expected, we find that the connectedness length scales simply as 
R. We arrive at the scaling form of 4: 

~ R ( A p ) -  1/2 (2.4) 

The measurements of ~, r, and v provide strong evidence that there is a 
mean-field regime in LRBP. We know, however, that this regime cannot 
continue all the way to Pc; there will be a crossover to true asymptotic 
scaling below six dimensions. The Ginzburg criterion is commonly used to 
estimate where crossover occurs. This is a ratio of the mean square 
magnitude of fluctuations in a region the size of the connectedness length 
(i.e., ~d) to the square of the magnitude of the order parameter. As long as 
the ratio is small, the system will exhibit mean-field behavior. Below Pc the 
quantity that scales like the order parameter is Ps*, the probability that a 
site belongs to a cluster spanning a region of length ~.~23~ It follows that the 
number of sites within a region ~d which belong to large clusters must scale 
as P~, ~d. The mean square fluctuations in this quantity are proportional to 
the second moment of the distribution, which is the mean cluster size S(p) 
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multiplied by ~a. The Ginzburg criterion (24) asserts that as long as the 
inequality 

~'2S(p)/(~dPs.) 2 ~ 1 (2.5) 

is satisfied, the system will exhibit classical scaling. Substituting the 
appropriate scaling quantities into (2.5), we have 

Ra(Ap) ~'+2~-~v >> 1 (2.6) 

or, since in the mean-field regime we have y = 1, fl = 1, v = 1/2, 

Ra(Ap)3 d/2~> 1 (2.7) 

We will need this expression in the next section. For  now we point out that 
the Ginzburg criterion is always well satisfied in our LRBP simulations. In 
our worst case d =  2, R = 1000, dp = 0.01, so that the lhs of Eq. (2.7) is 
equal to 100. 

3. THE B R E A K D O W N  OF HYPERSCALING A N D  THE 
CROSSOVER TO THE A S Y M P T O T I C  REGIME 

In the preceding section we found mean-field values for the exponents 
7, r, and v. It follows from the scaling relations that all of the critical 
exponents in this regime are classical. This result is independent of 
hyperscaling; we can use scaling relations that do not involve the dimen- 
sion of space to obtain the rest of the exponents. In any dimension other 
than six the hyperscaling relations are therefore violated. We suggest that 
this breakdown of hyperscaling is intimately related to the crossover from 
classical to asymptotic scaling in d <  6 dimensions. 

We first consider a measurement which will lead us to the geometrical 
behavior underlying the breakdown of hyperscaling. Suppose we attempt to 
determine the exponent B from our simulations. We know that B must be 
equal to the mean-field value 1. In Section 2 we stated that the quantity 
which scales as (Ap) t~ (hence the singular part of the first moment of the 
cluster distribution) when p < Pc is the fraction of sites within a volume ~a 
belonging to large clusters. Naively, one might assume that this quantity is 
proportional to the density of a single large cluster. In order to check the 
validity of this assumption, we plot the log of the average density of mass 
within clusters whose radius of gyration is larger than R(Ap)-1/2 versus the 
log of Ap (Fig. 8). We find accurate values for the slope which do not 
correspond to the expected value of fl and are dimensionally dependent. In 
two, three, and five dimensions they are - 1, - 1/2, and + 1/2, respectively; 
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the slope increases by 1/2 each time we increment d. We conclude that the 
usual interpretation of/~ is incorrect in the mean-field regime of LRBP. 

This anomalous behavior may be resolved by noting that we have 
tacitly assumed that the number of large clusters within a region ~a does 
not vary with Ap. In standard nearest-neighbor percolation this is indeed 
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the case; the fraction of sites belonging to large clusters is therefore propor- 
tional to the density of a single large cluster. However, if the number of 
these clusters were to scale as some nonzero power of Ap, it would be 
necessary to include it as a factor of the density of a single cluster in order 
to determine the correct scaling of the overall fraction of sites belonging to 
large clusters. (3) Let us denote the density of a single cluster by Pl and the 
overall fraction of sites belonging to large clusters as p T" Since the number 
of large clusters Nc in a volume ~a scales as 

we would then have 

N,.~  (,~p)~- ~ U (3.1) 

(3.2) 

We claim that this is precisely what is happening in LRBP. Rearranging 
expression (3.2), we find that the density of a single cluster scales as 

(~p)~ 
Pl ~ (Ap)2 ~ Ca (3.3) 

After substituting the mean-field values of the exponents into Eq. (3.3) and 
using Eq. (2.4), we obtain 

Pl ~ R-a (AP)  2+a/2 (3.4) 

This relation correctly gives the exponents measured in Fig. 8. 
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The assertion that the number of large clusters in LRBP does not 
remain constant when we vary Ap is a physical way of saying that the 
hyperscaling relation 

2 - c ~ - d v = O  (3.5) 

is violated in dimensions other than the upper critical dimension ( d =  6). 
Below six dimensions the number of large clusters scales as a positive 
power of Ap, so that it goes to zero at Pc- This suggests the following 
geometrical mechanism enabling the system to crossover from classical to 
true asymptotic scaling below d =  6. In standard percolation the connected- 
ness length grows as we decrease Ap just enough to maintain a fixed 
average number of large clusters. All critical behavior must therefore 
inherently depend upon the dimension of space, a fact that is manifested in 
the satisfaction of the hyperscaling relations. In the mean-field regime of 
LRBP, however, ~ is independent of d. As we decrease dp below six dimen- 
sions, ~ does not grow rapidly enough to keep the number of large clusters 
constant and so this quantity will decrease. Thus, the system maintains its 
mean-field properties by "sacrificing" a portion of the large clusters; as long 
as there are enough sites within a region ~d to allow for a classical 
distribution of clusters where there is more than a single large cluster, the 
system will remain in the mean-field regime. Mathematically, we require 
[using (3.1)] 

(Ap)2 ~ ~a= Ra(Ap)2 ~-a~ ~> 1 (3.6) 

Or, using the scaling relation 2 - ~ = ~ + 2fl, 

Ra(Ap)7 + 28- dv >> 1 (3.7) 

This inequality is the Ginzburg criterion discussed in Section 2. Our inter- 
pretation is therefore consistent with standard crossover scaling analysis. 
When R is fixed, the system must cross over to true asymptotic scaling in d 
dimensions when (dp)3-d/z~ R d We note that according to (3.7), LRBP 
will behave classically for smaller Ap if we increase the value of R. 
Geometrically, the effect of increasing the value of R is to provide the 
system with more sites inside all regions the size of 4. This allows for the 
formation of a greater number of large clusters at a given value of dp. 
Hence, the larger we make the value of R, the more we can decrease Ap 
before there is an average of only one large cluster per region of size ~a. 
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4. FRACTAL PROPERTIES OF M E A N - F I E L D  LRBP CLUSTERS 

We have defined df to be the exponent which determines the scaling 
between the mass of large clusters Mcc and the connectedness length: 

Mcc ~ ~+ (4.1) 

Since the density of a large cluster p~ is ~ as a, using Eq. (3.3) we find 

~+~ (AP) # ~a 
(Ap)2- ~ ~d ~ (4.2) 

Substituting the mean-field values of the exponents into (4.2) and 
employing Eq. (2.4) yields d s = 4, a result independent of the dimension of 
space. We check this by plotting the mass of clusters whose radius of 
gyration is on the order of R(Ap)- l/2 against ~. Figure 9 shows such a plot 
for d = 2 ,  3, and 5. The resulting slope is the expected value to a high 
degree of accuracy. 

Next we consider the scaling behavior of the smaller clusters. 
Specifically, we wish to determine how the mass of a cluster scales with its 
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radius of gyration RG. If a small cluster is statistically the same as a large 
cluster generated at a bigger value of Ap, we will necessarily have the mass 
of any cluster scaling as R 4. Figure 10 shows a log-log plot of mass versus 
R G for clusters generated at a fixed value of Ap. The data indicates that 
mass scales as R 4 for all clusters. 

Finally, we investigate the Hausdorff dimension of LRBP clusters. 
Denoting the mass of a region inside a cluster by m and the length of that 
region by l, this means that 

m( l) ~ l d" (4.3) 

The Hausdorff and fractal dimensions are equivalent in nearest- 
neighbor bond percolation because of the following special property: a 
small cluster is identical to a region of the same geometrical size within a 
larger cluster. Consequently, a region of length l inside a cluster will be the 
same as another cluster generated at a value of Ap where d = l. Therefore, 
the exponent d:. is necessarily the same as dH. In four dimensions we can 
see that LRBP shares this property. Equation (3.4) shows that the density 
of large clusters is independent of Ap. The density of a region with length l 
is trivially the same as that of a large cluster when ~ = l; hence d F = dH. 
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Fig. 10. Mass Of clusters versus their radius of gyration for d =  5. Similar plots are obtained 
when d = 2 or 3. R = 1000. A total of 600,000 clusters were generated to make this plot. 
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Fig.  11 (continued) 

In dimensions other than four it is not obvious that d# = dH in LRBP. 
Consider the process of growing a single cluster using the Leath algorithm. 
In short-range percolation most of the new growth sites are on the edges of 
the cluster, so that the central region remains unchanged. In LRBP the 
longer bonds can reach back from a peripheral site into the cluster's 
interior and seed it with new growth sites. This would cause the density to 
increase. For large enough d this type of "filling-in" effect could disappear 
due to the low probability of its occurrence. 

We have made log-log plots of the density of annuli in large clusters 
versus the length of the annuli in an attempt to clarify these ideas. Recall 
that such a plot yields a slope of d H -  d. Due to computational limitations, 
we can not grow clusters large enough to accurately determine dH; the 
finite-size effects are too large. However, there are trends in the data which 
give useful information. First we examine the behavior of LRBP clusters 
below d =  4. Figures 1 la and 1 lb are annulus plots for large clusters in two 
and three dimensions, respectively. There is no indication of the slopes 
tending toward positive values as they would have to if dF=d H (since 
dj-= 4). Instead, we see a trend to a slope of zero in the interior of the 

822/53/'3-4-16 
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clusters and a dramatic increase in the density of annuli as Ap is decreased. 
This suggests that they fill in uniformly as postulated above. For  clusters in 
two and three it appears that df r d~/; instead, dH is simply d. 

Next we look at LRBP clusters in dimensions d >  4. One possibility is 
that d f =  du so that d =  4 serves as a crossover dimension in the fractal 
behavior of the clusters. This point of view is supported by certain features 
of the annulus plot in five dimensions (Fig. 1 lc). The finite-size effects are 
very pronounced; most of the plot is simply a falloff effect due to the edge 
of the clusters. However, at small lengths the curves superimpose upon one 
another, indicating that the interior structure of large clusters does not 
depend upon Ap. The behavior of this plot is markedly different than 
Figs. l l a  and l lb ,  where the interior structure changes radically. Recall 
also the data in Fig. 8c for the overall density of large clusters in five 
dimensions. As Ap decreased we saw that the density also decreased. If it is 
true that these clusters have an invariant inner structure, then it is 
impossible for their density to uniformly decrease as it would have to if 
dH = d. In fact, this invariance would mean that a region of length l inside a 
large cluster is the same as another cluster generated at a value of Ap where 

= l. This is precisely the geometrical property in short-range percolation 
which allows us to conclude that d i =  d H. Although the above arguments 
seem plausible, our data are not good enough to test them thoroughly. 
Also, field theory arguments seem to indicate that d j = d  in all 
dimensions. (2s) More work must be done to clarify this problem. 

In Section 3 we argued that the violation of hyperscaling is due to the 
nontrivial dependence of the number of large clusters on Ap. Presumably, 
then, if we could artificially fix the number of large clusters, hyperscaling 
would be restored. This is possible because we can make R an additional 
parameter. As a result, we have a peculiar situation where hyperscaling 
holds (but only because that is the condition we demand) and both v and 
df depend upon the dimension of space. Setting the number of clusters 
[Eq. (3.1)] equal to a constant gives a scaling relation between R and Ap: 

R ~ (Ap) t/2 - 3/a (4.4) 

The connectedness length becomes 

~ = R(Ap)  - 1/2 = (Ap) - 3/a (4.5) 

so that 
v = 3/d (4.6) 

Substituting into (4.2), we find 

df = 2d/3 (4.7) 
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Note that the same result may be obtained using Kadanoff scaling 
arguments (24) if we require mean-field values for ~ and/~ independent of d. 
Denoting the ghost field as h and the length of a block by L, we have for 
the rescaled fields 

~p' = L y Ap (4.8) 

h'= LZh (4.9) 

Using standard techniques, we obtain the scaling relations f o r / / a n d  7 
in terms of x, y, and d: 

fl = ( d -  x)/y (4.10) 

7 = (2x - d)/y (4.11 ) 

Requiring/~ and ~ to be their mean-field values, we find 

x =  Zd/3 (4.12) 

y=d/3 (4.13) 

With the assumption of hyperscaling, we have x = df and y ~ = v. These 
results agree with Eqs. (4.6) and (4.7). 

Figure 12 shows log-log plots in both d =  2 and d =  3 of the mass of 
large clusters versus the connectedness length, where we have kept the 
number of large clusters fixed according to the above prescription. As 
expected from the analysis above, we find slopes of 4/3 and 2, respectively. 

5. C O N C L U S I O N  

We have shown that, in contrast to long-range site percolation, ~6,7) 
LRBP does have a mean-field regime. This regime is characterized by 

Nc_RaAp3  d/2>~l (5.1) 

which is obtained from the Ginsburg criterion. Here N~. is the number of 
clusters the size of the connectedness length ~. 

We have also shown that in LRBP, (Ap) ~ is not the density of one 
infinite cluster but is, in fact, the density of sites in all N~ infinite clusters. 
Consequently, the density of sites in one infinite cluster is given by 

(Ap)~/Nc (5.2) 

The breakdown of hyperscaling in LRBP is associated with the fact 
that Nc scales with Ap. This is consistent with the results of Coniglio (3) and 
Aharony et al., (4~ who studied nearest-neighbor bond percolation for d >  6, 
where the same behavior was encountered. However, we can use the bond 
range R to restore hyperscaling. This is done by scaling R in such a way 
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that N,, remains fixed when Ap is varied. In this way hyperscaling is 
restored and the fractal dimension is given by 

df = d -  ~/v = 2d/3 (5.3) 

These results can also be obtained from a renormalization group 
(RG), i.e., Kadanoff rescaling, approach. This suggests that the bond or R 
rescaling defined above, when used in an RG context, generates a different 
fixed point than an RG using fixed R. This behavior was also observed by 
Green in his investigation of thermal models with long-range 
interactions. (26) 

Finally, the exponent d r of our clusters seems to be welt understood; 
however, the Hausdorff dimension dH is not. Field theory calculations (171 
appear to show that d H = d  for all d. However, our data, as explained 
above, indicate that dH=d only for d~<4. This will require further 
investigation. 

APPENDIX.  THE M O D I F I E D  LEATH A L G O R I T H M  

A single cluster is generated by the following method. (26) We select two 
sites to initially belong to the cluster. One of them is the origin and the 
other is chosen at random within range of the origin. We say that each of 
these sites is now a "growth site." By a Monte Carlo process we will now 
attempt to add new sites to the cluster by opening bonds with probability p 
between each of these sites and the remaining z -  1 neighbors. Since z is 
typically equal to 10 6, it is too inefficient for us to generate a random num- 
ber to determine the status of each bond. Instead, we use a trick due to 
Gawlinski and Stanley~28); we find the number of open bonds by randomly 
sampling a Poisson distribution. The mean number of open bonds 2 will be 
p ( z -  1) or, s incep=pc(1  --Ap) a n d p c =  1/ (z -  1), we have 2 =  1 - A p .  The 
probability of k open bonds is then 2%-~/k!. Having determined k, we 
randomly select that number of sites within the interaction range of the 
growth site to be new members of the cluster. The growth site is now 
termed a "dead site." We repeat this process for new sites as they are added 
until the cluster stops growing; i.e., all sites are dead. 

There are two things to note about this algorithm. First, it is apparent 
that all of our clusters have twice as many sites as those in the true 
distribution. This will not affect scaling, but it will change the amplitude of 
various quantities (e.g., the mean cluster size). Also, it is possible to select a 
new site in the process of adding sites which happens to be a dead site, 
thereby invalidating the whole algorithm. However, for large R this occurs 
only very rarely. This is the "distinct neighbor" approximation discussed in 
Section 2. When we have finished constructing a cluster we can go back 
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and check to make sure that no loops have formed. Our algorithm is 
therefore tailored for the mean-field regime and will not work in the 
asymptotic regime. 
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